

Air Pollution Meteorology- Basics

What is Mountain Meteorology?

Tioga Pass, CA Winter 1995

Lee Vining Canyon, eastern Sierra Nevada

Pilot Balloon Release- LVC, Sierra Nevada

No-Lift Balloons at Tioga Pass, Sierra Nevada

Why is mountain meteorology important?

The Western US

Mountain Meteorology: Applications for Air Pollution

Daytime- Late Afternoon

Early Evening

Synoptic-Scale Winds

Valley Winds

Drainage Flows

Cold Air Pool

Tethersonde in Yosemite Valley, Sierra Nevada

Vertical Profiles – Yosemite Valley (March 16, 1998)

Campfire smoke plume – Cayuse Creek, ID

Polluted CBL: Coast Mountains, British Columbia

Concepts of cold pool buildup

Valley/basin heat budget

$$\frac{\overline{\rho}c_{p}\frac{f\theta}{ft}dv = \underbrace{-\overline{\rho}c_{p}}_{A}?(\overline{\mathbf{V}\theta})dv + \underbrace{-\frac{\theta}{T}}_{C}?\overline{\mathbf{R}}dv + \underbrace{-\overline{\rho}c_{p}}_{D}?(\overline{\mathbf{V}\theta})dv$$

Term A: Rate of change of potential temperature (**Heat Storage**)

Term B: convergence of potential temperature flux by mean wind (**Advection**)

Term C: convergence of Radiative Flux

Term D: convergence of Turbulent Sensible Heat Flux

Mass conservation - valleys vs basins

The Peter Sink - limestone sinkhole

Map of Peter Sinks

Instrument locations

Peter Sinks ridgeline

Operations Base Tent

Tethersondes

Tethersonde, 3D sonic and net radiometer

CSI weather station & thermocouple mast

Temperature time series

Net radiation and sensible heat flux

Potential temperature profiles at TS1

Accumulated Heat Losses from Peter Sinks

Synchronous temperature profiles

Observed Slope Flow Structure – Peter Sinks

Summary- from Peter Sinks Experiments

- Air over basin sidewall became warmer (1-5 K) than air over basin center- does not support continued slope flows.
- Formation of persistent superadiabatic layers within one of the most stable atmospheric structures on Earth!
- Downslope flows played minor role in cold pool formation.
- Heat loss from basin atmosphere is initially at the net rate of longwave loss, but decreases with time through night.

Monson Ranch Vineyard, WA

